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Abstract: High density diffuse optical tomography has become increasingly important to detect
underlying neuronal activities. Conventional methods first estimate the time courses of the
changes in the absorption coefficients for all the voxels, and then estimate the hemodynamic
response function (HRF). Activation-level maps are extracted at last based on this HRF. However,
the error propagation among the successive processes degrades and even misleads the final results.
Besides, the computation burden is heavy. To address the above problems, a direct method is
proposed in this paper to simultaneously estimate the HRF and the activation-level maps from
the boundary fluxes. It is assumed that all the voxels in the same activated brain region share
the same HRF but differ in the activation levels, and no prior information is imposed on the
specific shape of the HRF. The dynamic simulation and phantom experiments demonstrate that
the proposed method outperforms the conventional one in terms of the estimation accuracy and
computation speed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical neuroimaging techniques have shown promise to understand the brain function because
of the advantages including good temporal resolution, portability, quietness and low sensitivity
to motion artifacts [1,2]. In recent years, they have evolved into high density diffuse optical
tomography (HD-DOT) from the initial functional near-infrared spectroscopy. They both can
distinguish the concentration changes in oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR), which are directly associated with the metabolisms of activated brain regions
[3–5]. However, different from the functional near-infrared spectroscopy, HD-DOT utilizes the
overlappingmeasurements at multiple distances from dense regular arrays of sources and detectors.
Besides, HD-DOT inverts the physically consistent photon-migration-model to reconstruct a
3-dimensional image and significantly improves the spatial resolution and quantitative accuracy.
In the conventional HD-DOT, the changes in absorption coefficients (µa) at every time point

are separately reconstructed and a time course for every voxel is formed. Then the changes in µa
before and after the stimulation onset are used to help judge whether a brain region is activated.
However, the HD-DOT data is usually contaminated by the physiological interferences induced by
cardiac pulsations, respiratory and blood pressure changes [6]. These physiological interferences
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may distort the time courses and even mislead the judgment of the activated regions. To address
this problem, the general linear model (GLM) is introduced to explain the time course of the µa
changes as the linear combination of some explanatory variables [7,8]. The coefficients of the
convolution of stimulus onsets with the hemodynamic response function (HRF) are referred to as
the activation levels. They are more reliable to determine whether a brain region is activated.

In the above GLM method, the HRF accuracy is important for the estimation of the activation
levels. Like functional magnetic resonance imaging (fMRI), in DOT the brain is also treated as a
linear time invariant system [9]. The HRF is defined as the impulse response evoked by a short
and single stimulus of unit intensity [10]. The power of statistical inferences based on the GLM
will also be weakened by the inaccurate HRF. Furthermore, estimating the precise timing and
waveform of the HRF is meaningful to explore the relative timing of neuronal activities, neuronal
feedback processes and sustained activities within a brain region [11].
For estimating the HRF, there have been many methods proposed in fMRI and DOT [12].

These methods vary greatly in the degree to which they make a priori assumptions about the
shape of the HRF [13]. At one extreme, the shape of the HRF is assumed to be pre-determined
[13,14]. Then, some methods are proposed to assume the HRF to be the Poisson, Gamma,
Gaussian and joint half cosine functions. However, experiments have shown that the HRF varies
across different subjects, ages, days, stimuli and brain regions [15]. Thus, it is necessary to
devise more feasible schemes to estimate the various shapes of HRF. Then the HRF is assumed
to be a linear combination of some basis function sets. The most common choice is to use the
canonical HRF and its derivatives with respect to time and dispersion as the basis function sets
[14,16]. In addition, some methods based on cosine functions, the principal components, radial
basis functions, spline basis sets and spectral basis function are proposed [13]. Furthermore, the
most flexible method assumes no a priori knowledge about the HRF shape. For example, the
finite impulse response model has been proposed within the GLM framework [17]. It contains
one free parameter for every time point following the stimulation onsets. However, this flexibility
has costs. The degree of freedom is too large and it is sensitive to the measurement noise. Thus,
the temporal regularization has been introduced in the smooth finite impulse response (SFIR) to
favor the HRF with small second order temporal derivatives [18].

However, all the above methods have two limitations. First, the HRF and the activation levels
are indirectly estimated from the time courses of µa changes instead of being directly estimated
from the boundary fluxes. The error in the separate computation of the µa changes at all the time
points will transfer to the subsequent estimations of the activation-level maps. If the estimated
HRF is not accurate, the activation-level maps will be degraded and even misled. Furthermore,
both the HRF and the activation levels are determined based on the separate time courses of
each voxel instead of combining the time course of all the voxels. When the signal to noise ratio
(SNR) is low, the accurate estimation is difficult. To overcome these shortcomings, a joint direct
estimation (JDE) method is proposed to simultaneously estimate the HRF and the activation-level
maps from the boundary fluxes. Based on the low-rank constraint and the assumption that all the
voxels in the same activated region share the same HRF, it avoids solving the µa changes for every
time point. Besides, it imposes no constraint on the specific shape of the HRF. Furthermore, the
a priori smooth information is utilized to improve the estimated HRF.

2. Methods

The inverse problems in DOT at all the time points (k=1, 2, . . . . . . , K) can be stacked together as
follows:

M = JX, (1)

where M = [m1m2 · · ·mK] ∈ RM×K with mk being the boundary flux changes at the k-th time
point and M being the total number of the measurements; X = [x1x2 · · · xK] ∈ RN×K with xk



Research Article Vol. 11, No. 6 / 1 June 2020 / Biomedical Optics Express 3027

being the µa changes at the k-th time point and N being the total number of the voxels; J ∈ RM×N

is the Jacobian matrix to describe the sensitivity of mk to xk.
According to the GLM, X can be expressed in the following form:

X = β(Sh)T + αfT + E, (2)

where β = [β1β2 · · · βN]
T with βn denoting the activation level at the n-th voxel; (·)T denotes the

transpose of the vector or matrix; S is the stimulus convolution matrix; Its entry S(i, j) will be 1 if
a stimulus is on at time k = i − j, k ≥ 0, and 0 otherwise. It is assumed that the neuronal cells in
the joint brain regions have the similar functions and share the same HRF h of µa in response
to the same stimulus. That is to say, h = hn for n=1, 2, . . . . . . , N. α = [α1α2 · · · αN]

T with αn
denoting the amplitude of the nuisance interference signal f at the n-th voxel; E is the noise term.
Equation (1) can be further reformulated as follows by substituting Eq. (2) into it

M = Jβ(Sh)T + JαfT + E1, (3)

where E1 = JE is the noise term.
Two independent random variables are orthogonal when at least one of the random variables

has zero mean (see Appendix A) [19]. The nuisance interference signals in the scalp (f) and
hemodynamic signals in the brain (h) are usually assumed to be independent from each other
[20,21]. f denotes the periodic changes of µa in the scalp caused by the cardiac, respiration and
Mayer wave. It can be usually simulated by sinusoidal functions [20]. Thus, its mean value is 0.
h and f can be further inferred to be orthogonal each other.

Suppose that r(·) denote the rank of a vector or matrix. r(β), r(h), r(α) and r(f) are all equal to
1. The product of multiple matrices is limited in its rank to the lowest of the constituent matrix
ranks (see Appendix B) [22]. Thus r(Jβ(Sh)T ) = 1 and r(JαfT ) = 1. On the one hand, the rank
of the sum of two matrices is smaller than or equal to the sum of the ranks of the two matrices,
thus r(M) ≤ 2. On the other hand, because M has at least two independent components h and f,
r(M) ≥ 2 [23,24]. Therefore, we obtain r(M) = 2.
In the singular value decomposition of M, the singular vectors are orthogonal each other

and the singular values are sorted in a descending order. The bigger singular value, the bigger
weight of the singular vector. Since r(M) = 2, the problem in Eq. (3) is essentially to find a
rank-2 approximation to the measurement M. According to the Eckart and Young theorem, a
rank-2 approximation can be obtained by the truncated singular value decomposition method
[25]. Specifically, M can be approximated by

M ≈
2∑

i=1
ξiuivT

i , (4)

where ξi, ui and vi are respectively the i-th singular value and left singular vector and right
singular vector. In addition, the boundary measurements exponentially decrease with increased
distance from the scalp. M is more sensitive to the scalp interference signals f than the cerebral
signals h induced by the brain activation [26]. Thus, f has bigger weight than h. Therefore, the
first term and second term in Eq. (4) respectively account for JαfT and Jβ(Sh)T . Accordingly,
the second term can be expressed as follows:

Jβ(Sh)T = ξ2u2vT
2 . (5)

By further decomposing Eq. (5), it is easy to obtain Jβ = u2 and Sh = ξ2v2. By solving separately
them, β and h can be solved.

In practice, the changes in the HbO and HbR concentrations are induced by the blood volume
and flow. Therefore, the true h is a smooth curve. This a prior information is helpful to regularize
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h. The equation Sh = ξ2v2 is converted into the following optimization problem by the commonly
used Tikhonov regularization method [22]:

min
h
| |Sh − ξ2v2 | |22 + λ | |Ch| |22 , (6)

where λ>0 is a positive regularization parameter tuning the balance between the fidelity and the
regularization terms. The second order difference matrix C defined below is used to impose the
smoothness constraint

C =



−2 1 0 · · · · · · 0

1 - 2 1 0
. . .

...

0
. . . . . . . . . . . .

...
...
. . . . . . . . . . . . 0
...
. . . 0 1 - 2 1

0 · · · · · · 0 1 - 2


. (7)

3. Simulation experiments

To investigate the performances of the proposed method, some simulation experiments with block
paradigms are conducted. Another commonly used non-parametric method based on the SFIR is
used as a reference method to compare with JDE. To quantitatively compare these two methods,
the estimated HRF and the true HRF are first normalized as hest and htr, respectively. Then, the
root mean square error (RMSE) is defined below [22]

RMSEh = (hest − htr)
T (hest − htr)/htr

Thtr. (8)

Besides, to quantitatively compare the qualities of the activation-level maps estimated by different
methods, several metrics are adopted [27]. First, the RMSE in this case is defined as follows

RMSEβ = (βest − βtr)
T (βest − βtr)/βtr

Tβtr, (9)

where βest and βtr are the estimated and true activation-level maps (both normalized by their own
maximum values). Second, the contrast-to-noise ratio (CNR) is selected to evaluate how the
activated region can be recognized from the background. The voxels with β bigger than half
of the maximum β value are selected to compose the activated brain region. The other voxels
compose the background. Then CNR is defined as follows

CNR =
|mean(βatd) − mean(βbk)|√

w · var(βatd) + (1 − w)var(βbk)
, (10)

where βatd and βbk are the vectors consisting of the β for the voxels in the activated region and
background, respectively; w = |βatd |/(|βatd | + |βbk |) with | · | representing the number of the
elements in the vector. Area ratio (AR) is adopted to assess the ratio of the area of the estimated
activated region to the true one. At last, the duration is used to compare the computation speed. In
general, smaller RMSE, bigger CNR and AR closer to 1 represent higher quality images. Shorter
duration means faster computation speed.

3.1. Optical model

When photons are emitted into the brain tissues, they are often absorbed and scattered multiple
times before arriving at detectors. The Monte Carlo and the diffusion equation are commonly
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used to model the transport of the photons in the turbid medium. Considering the low-scattering
property of the cerebral spinal fluid (CSF) where the diffusion equation is not applicable, the
golden standard method Monte Carlo is used. To accelerate the computation speed, the Monte
Carlo based on the graphics processing unit is used to perform the parallel computation [28]. A
5-layered MRI head atlas is utilized and it includes the scalp, skull, CSF, gray matter and white
matter [29]. The detailed layered structure of the atlas is shown in Fig. 1. The concentrations of
HbO and HbR for all the layers are listed in Table 1 and their optical properties at the wavelengths
of 760 nm and 830 nm are detailed in Table 2 [30]. 20 light sources (red circles) and 12 detectors
(blue squares) are assigned on the scalp surface with an equal interval of 20 mm as shown in Fig. 2.
The coordinates of Y and Z for the sources range from 50 mm to 110 mm and 48 mm to 128 mm,
respectively. Because the sources are placed on the scalp, their X coordinates are determined
by the outermost scalp with the same Y and Z coordinates with the sources. The detectors are
located at the centers of every 4 joint sources. Likewise, their X coordinates are determined by
the outermost scalp with the same Y and Z coordinates with the detectors. One source-detector
pair is defined as a channel and all the channels are divided into the first, the second and the third
nearest-neighbor (NN) channels (NN-1, NN-2 and NN-3). Their source-detector separations
are 13.44 mm, 30.04 mm and 40.31 mm, respectively. Because the measurements of NN-2 and
NN-3 have appropriate detection depth and SNR, they are used to estimate the HRF and the
activation-level maps. Besides, in the following simulation experiments, the voxels in the gray
matter in the domain of 24mm<X<50 mm, 77 mm < Y < 85 mm and 80 mm < Z < 100 mm
consist the activated brain region, as shown in Fig. 1 and Fig. 2.

Fig. 1. Layered head structure: (a) vertical plane at Z=95 mm; (b) coronal plane at X=40
mm. Different colors denote different tissue types.

Table 1. Concentrations of HbO and HbR for different tissue types.

[HbO]/mM [HbR]/mM

Scalp 0.0575 0.0313

Skull 0.0443 0.0195

CSF 0.0110 0.0083

Gray matter 0.0559 0.0350

White matter 0.0681 0.0265

The HRF of HbO concentration is modeled as the linear combination of two gamma functions
[31,32]:

hHbO(k) = ψ1[Γn(k, τ1, ρ1) − ψ2Γn(k, τ2, ρ2)], (11)
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Fig. 2. Brain atlas: (a) right view; (b) back view with assignment of NN-1, NN-2 and NN-3.
The green color denotes the activated brain region.

Table 2. Optical properties for different tissue types.

760 nm 830 nm Index of refraction

µa/mm−1 µ′s/mm−1 µa/mm−1 µ′s/mm−1 n

scalp 0.0189 0.7287 0.0179 0.6579 1.4

skull 0.0129 0.9289 0.0131 0.8582 1.4

CSF 0.0040 0.3000 0.0040 0.3000 1.4

Gray matter 0.0200 0.8169 0.0181 0.7010 1.4

White matter 0.0186 1.1703 0.0195 1.0427 1.4

where k denotes the discrete time points; Γn(k, τj, ρj) =
1

p!τj

(
k−ρj
τj

)p
e−

k−ρj
τj δ(k− ρj)with δ(k− ρj) =

1, if k − ρj ≥ 0

0, otherwise
; ψ1 regulates the amplitude; ψ2 determinates the undershoot; τ1 and τ2

regulate the hHbO(k) shape; ρ1 and ρ2 tune the scale. These specific parameters are set as follows:
ψ1 = 1282;ψ2 = 0.5; τ1 = τ2 = 1; ρ1 = −0.5; ρ2 = 3.5. The HRF for the HbR hHbR(k) is inverted
and with a maximum set at -1/3 with respect to hHbO(k). Besides, hHbR(k) delays 2 s relative to
hHbO(k). In summary, hHbR(k) = − 1

3hHbO(k − 2fs) with fs denoting the sampling rate [33]. Their
waveforms are shown in Fig. 3(a).

As shown in Fig. 3(b), the block stimuli are consisted of two box functions whose width and
interval are 5 s and 20 s, respectively. The normalized convolution of HRF (HbO and HbR
concentrations) and stimulation are also presented in Fig. 3(b). According to the concentrations
of HbO and HbR in Table 1, the normalized time course of µa changes at the wavelength of 760
nm and 830 nm are calculated and shown in Fig. 3(c). Besides to the changes in µa happening
in the gray matter, the interference often occurs in the scalp and hinders the estimation of the
HRF and the activation-level map. They are usually caused by the cardiac, respiration and Mayer
wave, which can be simulated with sinusoidal oscillations with frequencies being 1 Hz, 0.3 Hz
and 0.1 Hz, respectively. The normalized waveform of the sum of scalp interferences is shown in
Fig. 3(d). The µa in the gray matter and scalp both change at most about 50% relative to their
own initial values. The total temporal length is 60 s and the temporal sampling frequency is 10
Hz. Therefore, in total 600 time points are considered.
Though some researchers assume the scalp interferences to be global, it is still necessary

to investigate the local scalp interference in the following simulation experiments [34–37].
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Fig. 3. Normalized time courses: (a) hHbO(k) and hHbR(k); (b) The stimulus and its
convolution with hHbO(k) and hHbR(k); (c) Changes of µa in the activated brain region at
the wavelengths of 760 nm and 830 nm; (d) The scalp interference signal.

For the local case, the interferences are assumed to happen only in the scalp in the domain
24mm<X<50 mm, 50 mm < Y < 100 mm and 40 mm < Z < 75 mm.

The NN-1 channels with a short source-detector separation are only sensitive to the µa changes
in the scalp. They can be used as reference signals in the SFIR to filter out the interference
components included in the time course of the µa changes in the gray matters [38]. Furthermore,
the frequency of the cardiac is about 1 Hz, not overlapped by that of the HRF. Thus, a Butterworth-
type low pass filter with cut-off frequency of 0.4 Hz is used to remove the high frequency
components. At last, a moving average filter with a window width of 5 is used to further smooth
the time courses. Besides, the SNR of the measurements is proportional to the squared root of the
light intensity at each channel [39]. The Gaussian white noise is added into the pure simulated
data to achieve SNR=20 dB for the channels with the weakest light intensity. After the simulation
experiments are repeated 10 times, the average values and the standard deviations are used to
assess the performances of the proposed method.

3.2. Global scalp interference

Taking the wavelength of 760 nm as an example, the curve of singular values in a decreasing
order is shown in Fig. 4(a). It decreases rapidly and the first two singular values are much bigger
than the other ones. Besides, the first right singular vector shown in Fig. 4(b) is consistent with
the true scalp interference. Likewise, the second right singular vector in Fig. 4(c) is also in
accordance with the true changes of µa in the activated brain region. These observations confirm
the conclusions in Section 2.
The time courses of changes in µa at the two wavelengths are converted into the changes of

HbO and HbR concentrations. The HRFs of HbO and HbR concentrations are estimated by SFIR
and JDE. As shown in Fig. 5, HRFs of HbO and HbR concentrations of JDE are closer to the
true ones, compared to the SFIR. For the HbR of SFIR, the lowest value appears earlier than the
true one. JDE obtains smaller RMSEs than the SFIR, as shown in Table 3.
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Fig. 4. Normalized time courses in the case of global scalp interference: (a) singular value
curve; the (b) first and (c) second right singular vector of M.

Fig. 5. Normalized HRFs of HbO and HbR concentrations in the case of global scalp
interference

Table 3. RMSEs of the normalized HRFs of HbO and HbR concentrations estimated by SFIR and
JDE in the case of global scalp interference

SFIR JDE

HbO 0.29± 0.09 0.17± 0

HbR 0.46± 0.04 0.35± 0
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As shown in Fig. 6, the normalized activated regions estimated by JDE have less artifacts,
compared with those of SFIR. Furthermore, the metrics of the activation-level maps are calculated
and shown in Table 4. Except for the AR at the wavelength of 760 nm, the JDE method obtains the
smaller RMSEβ , bigger CNR, AR closer to 1, demonstrating that the JDE has better expressions
to estimate the activation-level maps. In addition, the durations of JDE are much shorter than
those of the SFIR. The standard deviations of all the metrics of the JDE are smaller than those of
the SFIR. This demonstrates that the JDE is more robust to the noise than the SFIR.

Fig. 6. Coronal planes at X=40 mm of the normalized activation-level maps in the case of
global interference: (a) 760 nm, SFIR and (b) 760 nm, JDE; (c) 830 nm, SFIR and (d) 830
nm, JDE; (e) True.

Table 4. Metrics of the normalized activation-level maps estimated by SFIR and JDE in the case of
global scalp interference

wavelength 760 nm 830 nm

Method SFIR JDE SFIR JDE

RMSEβ 1.00± 0.02 0.95± 0 1.09± 0.06 1.01± 0.01

CNR 54.27± 5.11 68.81± 1.81 45.37± 9.11 62.50± 0.79

AR 0.80± 0.10 0.76± 0.04 1.66± 0.68 1.61± 0.10

Duration 339.82± 7.39 0.84± 0.02 317.73± 6.56 0.97± 0.02

3.3. Local scalp interference

In the case of local scalp interference, we also take the wavelength of 760 nm as an example. The
normalized singular value curve is shown in Fig. 7(a) and it decreases rapidly. But the relative
value of the second biggest one is bigger than that of the global interference. This is possibly
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because the local scalp interference contributes less to the boundary measurements than the
global interference. Besides, the first component (Fig. 7(b)) and the second component (Fig. 7(c))
respectively account for the scalp interference and the changes of µa in gray matter. Then the
changes of µa are converted into the changes of HbO and HbR concentrations which are used to
estimate the HRFs of HbO and HbR concentrations. As presented in Fig. 8, JDE estimates HRFs
closer to the true ones. The HRF of HbR concentration has an artificial positive peak. In Table 5,
the JDE method also has smaller RMSEs than the SFIR.

Fig. 7. Normalized time courses in the case of local scalp interference: (a) singular value
curve; the (b) first and (c) second right singular vector of M.

Table 5. RMSEs of the normalized HRFs of HbO and HbR concentrations estimated by SFIR and
JDE in the case of local scalp interference

SFIR JDE

HbO 0.38± 0.10 0.20± 0

HbR 1.01± 0.43 0.34± 0

In Fig. 9, the normalized activation level maps estimated by the JDE have less artifacts than
those of SFIR. The metrics of the activation level maps are compared in Table 6. It is clear
that JDE almost improves all the metrics, except the AR. In addition, the JDE has much smaller
durations than the SFIR.
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Fig. 8. Normalized HRFs of HbO and HbR concentrations in the case of local scalp
interference

Fig. 9. Coronal planes at X=40 mm of the normalized activation-level maps in the case of
local interference: (a) 760 nm, SFIR and (b) 760 nm, JDE; (c) 830 nm, SFIR and (d) 830
nm, JDE; (e) True.
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Table 6. Metrics of the normalized activation-level maps estimated by SFIR and JDE in the case of
local scalp interference

wavelength 760 nm 830 nm

Method SFIR JDE SFIR JDE

RMSEβ 0.98± 0.04 0.91± 0 1.02± 0.05 0.96± 0.02

CNR 64.58± 7.64 86.92± 1.95 52.86± 11.17 65.30± 3.48

AR 0.80± 0.21 0.70± 0.04 0.93± 0.66 1.18± 0.14

Duration 397.62± 21.07 0.86± 0.08 284.4± 5.12 0.8± 0.02

4. Phantom experiments

The performances of the proposed method are further investigated based on dynamic phantom
experiments [27].

4.1. Experimental setup

As shown in Fig. 10, a cuboid-shaped daicel phantom of size 100 mm × 120 mm × 30 mm is
used to simulate a human head. At the wavelength of 785 nm, its optical properties are about
µa = 0.0041/mm, µ′s = 1/mm[40]. Inside this phantom, a cylinder hole is embedded to simulate
the activated brain region. Its diameter and depth are 15 mm and 18 mm, respectively. It is
worth noting that, the distance between the bottom of the cylinder hole and the bottom of the
daicel phantom is 12 mm, which is thick enough to simulate the scalp. The mixed solution of
intralipid (mimicking scattering) and ink (mimicking absorption) are used to simulate the brain
at different states. Cup A and B are respectively filled with target solution (µa = 0.0260/mm,
µ′s = 1.0134/mm) and background solution (µa = 0.0173/mm, µ′s = 1.0134/mm). The mixed
solution in Cup A and B is pumped into the cylinder hole by an input constant flow pump. At the
same time, the solution in the cylinder hole is pumped into Cup C by another output constant
flow pump. Two pumps’ flows are adjusted to be equal so that the volume of the solution in the
cylinder hole keeps constant. At the beginning, the cylinder hole is filled with the background
solution. After operating the equipment according to Table 7, µa in the cylinder hole will first
increase and then decrease back to the initial value.

Table 7. Operation process of the dynamic phantom equipment.

Duration/s Switch 1 Switch 2 Pumps µa

30 Closed Closed Closed Remain

40 Opened Closed Opened Increase

20 Closed Closed Closed Remain

50 Closed Opened Opened Decrease

As shown in Fig. 10, a HD-DOT prototype instrument based on a lock-in photon-counting
technique is utilized [41]. It combines the high sensitivity of the photon-counting technique and
the parallel features of the lock-in technique. 20 laser diode sources and 12 photon counting
photomultipliers (H10682, Hamamatsu, Japan) are placed under the phantom. The sources are
modulated by square waves with frequencies ranging from 6 kHz to 10 kHz with an interval of 0.2
kHz. The sources are working in a multi-field illumination mode. In every filed, multiple sources
are lit simultaneously. The detected photons are demodulated according to the modulating
frequencies. In total, 8 fields are needed to light all the sources. The accumulation period for
each field is 200 ms and the frame rate is 0.625 Hz. During the whole experimental process, the
sources are lit field by field and the boundary fluxes are continuously detected.
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Fig. 10. Schematic of the dynamic phantoms and the HD-DOT detecting equipment. Cup
A, B and C are filled with the target solution, background solution, and waste solution,
respectively. Switch 1 and 2 are used to select a cup from which the solution is pumped into
the cylinder hole.

4.2. Results

In this phantom experiment, it is very difficult or nearly impossible to accurately know the
true HRF of the system. The next best choice is to find a pair of stimulation and HRF whose
convolution optimally fit the reconstructed time course of µa changes (δµa) in the cylinder hole,
as shown in Fig. 11(a). This optimal stimulation is then used in the SFIR and JDE to estimate
the HRF, which is then compared with the optimal HRF. In Fig. 11(b), the normalized HRF
estimated by JDE is closer to the optimal one than that of SFIR. RMSEh of JDE is smaller than
that of SFIR, as shown in the first row in Table 8.

Table 8. Metrics of the normalized HRF and activation-level maps estimated by SFIR and JDE in
the dynamic phantom experiments.

Method SFIR JDE

RMSEh 0.12 0.09

RMSEβ 1.14 0.72

CNR 7.16 11.95

AR 2.62 1.38

Duration/s 3.84 0.39

The normalized activation-level maps and their horizonal profiles passing through the peak
activation level are plotted in Fig. 12. It is easy to see that the activated region estimated by SFIR
is much bigger than the true one. However, the activated region estimated by the JDE is very
close to the true size and has less artifacts. The profile of the JDE is narrower than that of SFIR.
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5. Discussions

Limited by the existing phantom experimental conditions, the physiological interferences cannot
be simulated. Accordingly, the terms associated with the interferences in Eqs. (2), (3) and (4)
should be removed. The singular vectors of M only include the cerebral signals induced by
the brain activation. Therefore, the interference term in Eq. (4) can be neglected and it can be
approximated only with the first term:

M ≈ ξ1u1vT
1 . (12)

The activation-level maps and HRF are respectively estimated based on the u1 and v1. Though
the phantom experiments cannot completely mimic the real activation processes happening in
the human brains, it still to some extent demonstrates the expected better performances of the
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JDE than the SFIR. Besides, in the phantom experiments, the semi-three-dimensional framework
is used to reduce computational burden and improve image qualities. It provides a trade-off
between the full 3 dimensional optical tomography and 2 dimensional topography [42].

To fairly compare the JDE and SFIR, the stable and fast algebraic reconstruction technique with
no a priori information is used when solving the inverse problems in the above sections. However,
it is possible to introduce the sparsity regularization to further improve the image qualities [43].
When activated by some stimulus, only some localized region is activated, but the remaining
parts are still at rest state. This means that the activation-level map is itself sparse [44]. Whereas,
the selection of the optimal regularization parameter is difficult [45]. The commonly used cross
validation needs to solve the inverse problems for every optional regularization parameter. This
is time consuming especially for the conventional SFIR because it needs to solve one inverse
problem to obtain the µa changes for every time point. The computation burden will increase with
the number of time points. It will be nearly impossible to implement the cross validation for the
practically big number of time points. However, the JDE only needs to solve one inverse problem
to estimate the activation-level maps. Thus the JDE is much faster than the SFIR, which makes it
much easier to introduce the sparsity regularization and select the best regularization parameter.
Herein, the well-known L1-norm based fast iterative shrinkage-thresholding algorithm and the
regularization parameter of 0.5 are selected to show the improved performances contributed by
the sparsity regularization [46]. The activation-map and the profile passing through the peak
voxel are presented in Fig. 13. Compared with the results in Fig. 12, the activated region is closer
to the true one and the profile is narrower. Besides, the metrics are also improved compared with
those in Table 8. RMSEβ , CNR and AR are respectively 0.52, 17.90 and 0.91.
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6. Conclusions

By incorporating the low-rank constraint, we propose a direct method to simultaneously estimate
the normalized HRF and the activation-level maps from the boundary fluxes. It is unnecessary to
separately obtain the µa changes at every time point. Besides, the a priori smooth information
is imposed on the HRFs of HbO and HbR concentrations to improve the qualities. The better
expression of the proposed JDE method is then validated by the dynamic numerical and phantom
experiments. The experimental results demonstrate that the JDE can obtain more accurate HRFs.
Besides, the activation-level maps estimated by the JDE method have better qualities compared
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with the conventional SFIR. In conclusion, the proposed JDE method can improve the estimated
HRF, activation-level maps and the computation speed.

Appendix A

If random variables A and B are independent, it implies pX,Y (x, y) = pX(x)pY (y). Then

E(XY) =
∫ ∫

xypX,Y (x, y)dxdy

=

∫ ∫
xypX,(x)pY (y)dxdy

=

∫
xpX(x)

(∫
ypY (y)dy

)
dx

=

(∫
ypY (y)dy

) (∫
xpX(x)dx

)
= E(X)E(Y)

(13)

where pX,Y (x, y) is the joint probability density function of joint random variables X and Y;
pX(x) and pY (y) are respectively the probability density functions of X and Y; E(·) denotes the
expectation operator.

If at least one of E(X) and E(Y) is equal to 0, E(XY) = 0. According to the definition, random
variables X and Y are orthogonal if E(XY) = 0[19].’

Appendix B

The range of an m-by-n matrix A is defined below [47]

range(A) = {y ∈ Rm : y = Ax for some x ∈ Rn} (14)

The rank of A is defined by the dimension of range(A), i.e., r(A) = dim(range(A)). Suppose
there is another n-by-l matrixes B. Consider any vector y ∈ range(AB). Then there exists
a vector x ∈ Rl such that y = (AB)x. Let z = Bx ∈ Rn. Then y = Az and y ∈ range(A).
Therefore, range(AB) is a subspace of range(A) and dim(range(AB)) ≤ dim(range(A)). Then
r(AB)) ≤ r(A).
Since r(AB) = r(BTAT ), similar to the above derivation, r(BTAT ) ≤ r(BT )[48]. Because

r(BT ) = r(B), r(AB)) ≤ r(B). In summary, r(AB)) ≤ min(r(A), r(B))) where min(·) denotes the
minimization operation.
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